Skip to content

%% Limit %%

Derivative

Tags
Cegep1
Calculus
Word count
646 words
Reading time
5 minutes

Slope of a Tangent Line of a function
Also instantaneous rate of change of the function at the tangent point
The derivative of f at x is

f(x)=y=ddx[f(x)]=dydx=limh0f(x+h)f(x)h

$\frac{f(x + h) - f(x)}{h}$ is called the **difference quotient**.

$\frac{\mathrm{d}y}{\mathrm{d}x}$ is called the **differentiation operator**, or formally Leibniz's notation, and means "take the derivative with respect to $x$."

+

f(a) stands for derivative at a while ddxf(a) is derivative at y=f(a), which is always 0.
Under Leibniz's notation we write

ddxf(x)|x=a

Sidedness

Left-side derivative at a:

f(a)=limh0f(a+h)f(a)h

Right-side derivative at a:

f+(a)=limh0+f(a+h)f(a)h

$f'(x) = L \iff f'_-(x) = f'_+(x) = L$

Order

The n th order derivative of f is:

nf(n)(x)y(n)dndxnf(x)dnydxn
0f(x) or f(0)(x)y or y(0)d0dx0f(x)dy0dx0
1f(x) or f(1)(x)y or y(1)ddxf(x)dydx
2f(x) or f(2)(x)y or y(2)d2dx2f(x)dy2dx2
3f(x) or f(3)(x)y or y(3)d3dx3f(x)dy3dx3
4f(4)(x)y(4)d4dx4f(x)dy4dx4

Properties & theorems

  • ddxc=0
  • ddx(cf(x))=cf(x)
  • ddx(f(x)±g(x))=f(x)±g(x)
  • Product Rule: ddx(f(x)g(x))=f(x)g(x)+g(x)f(x)
  • Quotient Rule: ddxf(x)g(x)=g(x)f(x)f(x)g(x)(g(x))2, provided g(x)0
  • Chain Rule: ddx(fg)(x)=(fg)(x)g(x)
  • General Power Rule: ddxf(x)n=nf(x)n1f(x)
  • ddxsinx=cosx
  • ddxcosx=sinx
  • ddxtanx=sec2x
  • ddxsecx=tanxsecx
  • ddxcscx=cotxcscx
  • ddxcotx=csc2x
  • ddxarcsinx=11x2
  • ddxarccosx=11x2
  • ddxarctanx=11+x2
  • ddxarcsec x=1|x|x21
  • ddxarccsc x=1|x|x21
  • ddxarccot x=11+x2
  • ddxlogbx=1xlnb
  • ddxax=axlna

Examples

Find k(1) of k(x)=(x2+3)3(x2x2)2.

k(1)=ddxk(x)|x=1=ddx((x2+3)3(x2x2)2)|x=1=3(x2+3)2(x2+3)(x2x2)2+(x2+3)32(x2x2)(x2x2)|x=1=3(x2+3)22x(x2x2)2+(x2+3)32(x2x2)(14x)|x=1=3(4)22(12)2+(4)32(12)(14)=31621+64213=96+384=480

Find the derivative of h(y)=tan(sec((y3+1)4)).

h(y)=ddyh(y)=ddy(tan(sec((y3+1)4)))=sec2(sec((y3+1)4))(sec((y3+1)4))=sec2(sec((y3+1)4))sec((y3+1)4)tan((y3+1)4)4(y3+1)33y2

Find the derivative of y=x+x+x454.

Let 4rt(x)=x4, 5rt(x)=x5,
then 4rt(x)=14x1/41=14x3/4, 5rt(x)=15x1/51=15x4/5.

y=ddxx+x+x454=ddx4rt(x+5rt(x+4rt(x)))=4rt(x+5rt(x+4rt(x)))ddx(x+5rt(x+4rt(x)))=4rt(x+5rt(x+4rt(x)))(1+ddx5rt(x+4rt(x)))=14(x+5rt(x+4rt(x)))3/4(1+5rt(x+4rt(x))ddx(x+4rt(x)))=14(x+x+x45)3/4(1+15(x+4rt(x))4/5(1+4rt(x)))=14(x+x+x45)3/4(1+15(x+x4)4/5(1+14x3/4))

Contributors

Changelog